Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38213150

RESUMO

Chimeric antigen receptor T-cells, known as CAR-T cells, represent a promising breakthrough in the realm of adoptive cell therapy. These T-cells are genetically engineered to carry chimeric antigen receptors that specifically target tumors. They have achieved notable success in the treatment of blood-related cancers, breathing new life into this field of medical research. However, numerous obstacles limit chimeric antigen receptors T-cell therapy's efficacy, such as it cannot survive in the body long. It is prone to fatigue and exhaustion, leading to difficult tumor elimination and repeated recurrence, affecting solid tumors and hematological malignancies. The challenges posed by solid tumors, especially in the context of the complex solid-tumor microenvironment, require specific strategies. This review outlines recent advancements in improving chimeric antigen receptors T-cell therapy by focusing on the chimeric antigen receptors protein, modifying T-cells, and optimizing the interaction between T-cells and other components within the tumor microenvironment. This article aims to provide an extensive summary of the latest discoveries regarding CAR-T cell therapy, encompassing its application across various types of human cancers. Moreover, it will delve into the obstacles that have emerged in recent times, offering insights into the challenges faced by this innovative approach. Finally, it highlights novel therapeutic options in treating hematological and solid malignancies with chimeric antigen receptors T-cell therapies.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38116189

RESUMO

A novel and rapid therapeutic approach is the treatment of human breast cancer by enhancing the host's immune system. In initial findings, program death one (PD-1) and program cell death ligand one (PD-L1) showed positive results towards solid tumors, but tumor relapse and drug resistance are the major concerns. Breast cancer therapy has been transformed by the advent of immune checkpoint blockades (ICBs). Triple-negative breast cancers (TNBCs) have exhibited enduring responses to clinical usage of immune checkpoint inhibitors (ICBs) like atezolizumab and pembrolizumab. Nonetheless, a notable proportion of individuals with TNBC do not experience advantages from these treatments, and there is limited comprehension of the resistance mechanisms. Another approach to overcome resistance is cancer stem cells (CSCs), as these cells are crucial for the initiation and growth of tumors in the body. Various cancer vaccines are created using stem cells (dendritic, whole cell, bacterial) and focus primarily on targeting tumor-related antigens. The ultimate objective of cancer vaccines is to immunize the patients by active artificial immunity against cancer, though. In this review, we primarily focused on existing immunotherapeutic options, immune checkpoint blockers, the latest progress in understanding the molecular mechanisms underlying resistance to immune checkpoint inhibitors (ICBs), advanced strategies to overcome resistance to ICBs, cancer stem cell antigens and molecular markers, ongoing clinical trials for BCs and cancer vaccines for breast cancer.

3.
R Soc Open Sci ; 5(5): 171771, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29892370

RESUMO

Leishmaniasis is a vector-borne protozoan disease; it mainly originates from the bite of sandfly and initiated when parasite is transmitted to human at metacyclic flagellated promastigote form. In the current study, a synthesis of a series of 4-substituted benzophenone ethers 1-20 was carried out in good yields and their in vitro antileishmanial activities were also screened. Among synthetic derivatives, 15 compounds 1, 3, 5-12, 15 and 17-20 showed antileishmanial activities against promastigotes of Leishmania major with IC50 values in the range of 1.19-82.30 µg ml-1, and the values were compared with those of the standard pentamidine (IC50 = 5.09 ± 0.09 µg ml-1). Our study identified a series of new antileishmanial molecules as potential leads. Structures of these synthetic compounds were deduced by different spectroscopic techniques, such as 1H and 13C nuclear magnetic resonance, electron impact and high-resolution electron impact mass spectrometry and IR.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...